Belief Revision based Caption Re-ranker with Visual Semantic Information

Ahmed Sabir¹, Francesc Moreno-Noguer², Pranava Madhyastha³, Lluís Padró¹

¹ TALP Research Center, Universitat Politècnica de Catalunya, Barcelona, Spain

 2 Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain

 $^{\rm 3}$ City, University of London, UK

COLING 2022

Proposed Architecture

Experiments & Results

Conclusion

Proposed Architecture

Experiments & Results

Conclusion

- While SoTA models generate captions that are comparable to humans. They are known to lack lexical diversity. One of the limitations is that the **narrow beam search** may not result in the most description caption of the image.
- Also they are lack **semantic understanding** of the relation between objects in the image.

Image credit: COCO-Captions (Lin et al., 2014)

October 12-17

- Recent works use a beam search directly to produce diverse captions by forcing richer lexical word choices (Ippolito et al., 2019; Vijayakumar et al., 2018; Wang and Chan, 2019; Wang et al., 2020).
- However, these methods do not guarantee to include all objects in the image that are semantically related, which results in an incorrect diverse caption.

Image credit: COCO-Captions (Lin et al., 2014)

October 12-17

- Recent works use a beam search directly to produce diverse captions by forcing richer lexical word choices (Ippolito et al., 2019; Vijayakumar et al., 2018; Wang et al., 2019; Wang et al., 2020).
- We propose a post-process based **Visual Beam** re-ranker that intends to visually ground the most closely related candidate beam to its related visual context in the image.

Image credit: COCO-Captions (Lin et al., 2014)

Modern sophisticated image captioning systems focus heavily on visual grounding (object) to capture the detail of a static story in the image.

A.Sabir (UPC-TALP)

October 12-17

Modern sophisticated image captioning systems focus heavily on visual grounding (object) to capture the detail of a static story in the image.

visual detector to guide the image captioning

investigates informativeness of object info

language grounding via object information

explore reasoning in object grounding

Modern sophisticated image captioning systems focus heavily on visual grounding (object) to capture the detail of a static story in the image.

Visual Re-ranking Fang et al. (2015)

Object Freq Count

Wang et al. (2018)

visual detector to guide the image captioning

investigates informativeness of object info

Controlled Caption Cornia et al. (2019)

Semantic Coherency Zheng el al. (2021) language grounding via object information

explores reasoning in object grounding

Modern sophisticated image captioning systems focus heavily on visual grounding (object) to capture the detail of a static story in the image.

Visual Re-ranking Fang et al. (2015)

Object Freq Count

Wang et al. (2018)

Controlled Caption

Cornia et al. (2019)

language grounding via object information

investigates informativeness of object info

visual detector to guide the image captioning

Semantic Coherency

Zhang el al. (2021)

explores reasoning in object grounding

A.Sabir (UPC-TALP)

October 12-17

Motivation

Contributions

- Enhance the performance of any typical image captioning system without the necessity for additional training.
- Propose a human-inspired general approach that aims to calibrate the original likelihood of top-*n* captions by beam search to re-rank the most closely related caption to the visual information in the image.

Proposed Architecture

Experiments & Results

Conclusion

Proposed Architecture: Visual Hypothesis Revision

- Language Model (Autoregressive Language Model e.g. GPT)
- Visual Concept (Visual Classifier e.g. ResNet (He et al., 2019))
- Similarity (Mask Language Model e.g. BERT (Devlin et al., 2019))

Probability from Similarity (Blok et al., 2003)

SimProb is a concept based on **belief revision** framework. Belief revision is a process of formatting a belief by **bring into account a new piece of information.**

obs 1 Tigers can bit through wire, therefore Jaguars can bit through wire.

obs 2 Kitten can bit through wire, therefore Jaguars can bit through wire.

obs 1 seem logical because it match the expectation. This obs 1 is consistent with our previous believe (Tigers are similar to Jaguars in terms of strength), and **no need to revise it.**

Blok, Sergey, Douglas Medin, and Daniel Osherson. "Probability from similarity." AAAI. 2003.

Probability from Similarity (Blok et al., 2003)

SimProb is a concept based on **belief revision** framework. Belief revision is a process of formatting a belief by **bring into account a new piece of information.**

obs 1 Tigers can bit through wire, therefore Jaguars can bit through wire.

obs 2 Kitten can bit through wire, therefore Jaguars can bit through wire.

obs 2 is surprising because our prior belief is that kittens are not so strong, then we need to **revise and update our prior belief about** kitten strength.

Blok, Sergey, Douglas Medin, and Daniel Osherson. "Probability from similarity." AAAI. 2003.

Probability from Similarity SimProb

SimProb is a concept based on **belief revision** framework. Belief revision is a process of formatting a belief by **bring into account a new piece of information**.

$$\mathsf{P}(\mathsf{Q}_{\mathsf{c}}|\mathsf{Q}_{\mathsf{a}})=\mathsf{P}(\mathsf{Q}_{\mathsf{c}})^{lpha}$$

Hypothesis: $P(Q_c)$ Informativeness: $1 - P(Q_a)$ Similarities: $\alpha = \left[\frac{1 - \sin(a, c)}{1 + \sin(a, c)}\right]^{1 - P(Q_a)}$

Probability from Similarity SimProb

SimProb is a concept based on **belief revision** framework. Belief revision is a process of formatting a belief by **bring into account a new piece of information**.

$$P(Q_c|Q_a) = P(Q_c)^{\alpha}$$

Hypothesis: $P(Q_c)$ Original beliefInformativeness: $1 - P(Q_a)$ New informationSimilarities: $\alpha = \left[\frac{1 - sim(a, c)}{1 + sim(a, c)}\right]^{1 - P(Q_a)}$ Degree of similarity

Probability from Similarity SimProb

SimProb is a concept based on **belief revision** framework. Belief revision is a process of formatting a belief by **bring into account a new piece of information**.

$$P(Q_c|Q_a) = P(Q_c)^{lpha}$$

Hypothesis: $P(Q_c)$ Language ModelInformativeness: $1 - P(Q_a)$ Visual Context InformationSimilarities: $\alpha = \left[\frac{1 - sim(a, c)}{1 + sim(a, c)}\right]^{1 - P(Q_a)}$ Semantic Similarity

Sent Embedding is trained on hypothesis (w) to visual context (c)

$$C = \underset{\substack{c_i \in Image \\ P(c_i) \geq \beta}}{sim(w, c_i)}$$

$$sim(w,c) = rac{w \cdot c}{|ec{w}| \cdot |ec{c}|}$$

We convert the semantic score to probability according to assumption $p(w|c) \ge p(w)$. Thus the visual context asset the language model:

$$P(w|c) = P(LM)^{\alpha}$$
 where $\alpha = \left(\frac{1-sim(w,c)}{1+sim(w,c)}\right)^{1-P(c)}$

If there is no visual context information, α goes to = 1 the bare original belief probability is used.

Approach

Hypothesis

- As this approach is inspired by humans, the hypothesis P(w) needs to be initialized by a common observation from general text.

- We employ GPT-2 (Radford et al., 2019) to initialize the hypothesis. We set P(w) as the mean token probability.

Approach

Informativeness

- The informativeness is the new information set P(c) that causes the hypothesis revision.

- We leverage ResNet and Inception-ResNet v2 based faster R-CNN (Huang et al., 2017) to extract the visual information from the image.

Approach

Similarities

- Hypothesis revision is more likely if there is a close relation between the hypothesis and new information.

- We employ BERT (fine-tuned) to compute the semantic similarity between the hypothesis (caption) and its related visual context.

Dataset

Text hypothesis

- Training: the five human annotated caption from COCO-Caption dataset (460k captions: 373k for training, and 87k for validation)

- Testing: Top-20 Beam search from the baseline 5k Karpathy Split

Visual context

- Object classifier Resent152 (He et al., 2016) 1000 classes.
- Inception-ResNet Faster R-CNN (Huang et al., 2017) 80 classes.

VC ₁	VC ₂	VC ₃	Text hypothesis (Caption)
cheeseburger	plate	hotdog	a plate with a hamburger fries and tomatoes
bakery	dining table	web site	a table having tea and a cake on it
gown	groom	apron	its time to cut the cake at this couples wedding
racket	scoreboard	tennis ball	a crowd is watching a tennis game being played
laptop	screen	desktop computer	a grey kitten laying on a windows laptop
washbasin	toilet	seat tub	a bathroom toilet sitting on a stand next to a tub and sink

Proposed Architecture

Experiments & Results

Conclusion

Experiment

Baselines

- Transformer Caption Generator (12-layer Mech Transformer)
- VilBERT Pre-trained Model (12-in-1 datasets)

VilBERT Pre-trained Model (Lu et., 2020)

Mesh-Caption Transformer (Cornia et al., 2020)

Result

Model	B-1	B-4	М	R	С	S	BERTscore
VilBERT (Lu et al., 2020)							
VilGreedy	0.751	0.330	0.272	0.554	1.104	0.207	0.9352
VilBeamS	0.752	0.351	0.274	0.557	1.115	0.205	0.9363
Vil+VR _{W-Object} (Fang et al., 2015)	0.756	0.348	0.274	0.559	1.123	0.206	0.9365
Vil+VR _{Object} (Wang et al., 2018)	0.756	0.348	0.274	0.559	1.120	0.206	0.9364
Vil+VR _{Control} (Cornia et al., 2019)	0.753	0.345	0.274	0.557	1.116	0.206	0.9361
Vil+VR _{BERT} (only sim)	0.753	0.343	0.273	0.556	1.112	0.206	0.9361
Vil+VR _{BERT}	0.752	0.351	0.274	0.557	1.115	0.205	0.9365
Vil+VR _{BERT-Object}	0.752	0.352	0.277	0.560	1.129	0.208	0.9365
Vil+VR _{RoBERTa}	0.753	0.353	0.276	0.559	1.128	0.207	0.9366
Vil+VR _{RoBERTa-Object}	0.758	0.344	0.262	0.555	1.234	0.206	0.9365
Vil+VR _{BERT-Multi-class}	0.753	0.353	0.276	0.559	1.131	0.208	0.9365
Vil+VR _{BERT-Multi-object}	0.752	0.351	0.276	0.558	1.123	0.208	0.9364
Vil+VR _{RoBERTa-Multi-class}	0.751	0.351	0.277	0.561	1.137	0.208	0.9366
ViI+VR _{RoBERTa-Multi-object}	0.752	0.353	0.277	0.559	1.131	0.208	0.9366
Transformer based caption generator (Cornia et	al., 2020))				
TransGreedy	0.787	0.368	0.276	0.574	1.211	0.215	0.9376
Trans _{BeamS}	0.793	0.387	0.281	0.582	1.247	0.220	0.9399
Trans+VR _{W-Object} (Fang et al., 2015)	0.786	0.378	0.277	0.579	1.228	0.216	0.9388
Trans+VR _{Object} (Wang et al., 2018)	0.790	0.383	0.280	0.580	1.237	0.219	0.9391
Trans+VR _{Control} (Cornia et al., 2019)	0.791	0.388	0.281	0.583	1.248	0.220	0.9398
Trans+VR _{BERT} (only sim)	0.789	0.380	0.279	0.579	1.234	0.219	0.9389
Trans+VR _{BERT}	0.793	0.388	0.282	0.583	1.250	0.220	0.9399
Trans+VR _{BERT-Object}	0.793	0.385	0.281	0.581	1.242	0.219	0.9396
Trans+VR _{RoBERTa}	0.792	0.386	0.280	0.582	1.244	0.219	0.9395
Trans+VR _{RoBERTa-Object}	0.792	0.386	0.281	0.582	1.242	0.219	0.9396
Trans+VR _{BERT-Multi-class}	0.794	0.385	0.281	0.582	1.248	0.220	0.9395
Trans+VR _{BERT-Multi-object}	0.792	0.385	0.281	0.582	1.244	0.220	0.9395
Trans+VR _{RoBERTa-Multi-class}	0.791	0.385	0.280	0.581	1.244	0.219	0.9395
Trans+VR _{RoBERTa-Multi-object}	0.791	0.385	0.281	0.582	1.243	0.219	0.9395

A.Sabir (UPC-TALP)

October 12-17

Result

Multiple Visual Contexts

- We observe that longer captions benefit from more context via multiple visuals.

Evaluation

Diversity Evaluation

- Lexical Diversity: Textual Lexical Diversity (MTLD), Type Token Ratio (TTR) and Word per Caption (WPC)
- N-gram Diversity: Div-1 (n-gram), Div-2 (bi-gram) and mBLEU
- Semantic Diversity: Self-CIDEr and sentence SBERT-sts

	L	exical D	Diversity		Voc	m	BLEU↓	<i>n</i> -gram	Diversity	Semantic	Diversity
	MTLD	TTR	Uniq	WPC	Dist	best-5	best Beam*	Div-1	Div-2	Self-CIDEr	SBERT-sts
Human	19.56	0.90	9.14	14.5	3425						
VilBERT											
Vil _{BeamS}	17.28	0.87	8.05	10.5	894	0.899	0.454	0.38	0.44	0.661	0.7550
Vil+VR _{w-Object}	15.90	0.87	8.02	9.20	921	0.899	0.455	0.38	0.44	0.662	0.7605
Vil+VR _{Object}	15.77	0.87	8.03	9.19	911	0.899	0.455	0.38	0.44	0.661	0.7570
Vil+VR _{Control}	15.69	0.87	8.07	9.21	935	0.899	0.452	0.38	0.44	0.661	0.7567
Vil+VR _{RoBERTa} (ours)	17.70	0.87	8.14	10.8	892	0.896	0.451	0.38	0.44	0.661	0.7562
Transformer based capt	ion gener	ator									
Trans _{BeamS}	14.77	0.86	7.44	9.62	935	0.954	0.499	0.26	0.29	0.660	0.7707
$Trans+VR_{w-Object}$	13.14	0.85	7.37	8.62	965	0.958	0.498	0.25	0.29	0.660	0.7709
Trans+VR _{Object}	13.38	0.86	7.45	8.69	982	0.958	0.495	0.25	0.28	0.660	0.7700
Trans+VR _{Control}	13.25	0.86	7.44	8.64	961	0.958	0.498	0.25	0.29	0.660	0.7716
$Trans{+}VR_{BERT} \text{ (ours)}$	14.78	0.86	7.45	9.76	980	0.963	0.338	0.26	0.30	0.660	0.7711

please refer to the paper for all the metrics references.

Human Evaluation

- We conducted a human study to investigate human preferences over the visual re-ranked caption.
- We can observe that 46% of **native speakers** agreed with our visual re-ranker. Meanwhile, the result for **non-native** speakers is 61%

Model	Caption	BERTscore	SBERT-sts	Human%	Visual
BeamS	a close up of a plate of food	0.89	0.27	40	trifle
VR	piece of food sitting on top of a white plate	0.91	0.53	60	
Human refe	a white plate and a piece of white cake				NAME OF TAXABLE
BeamS	a group of men on a field playing baseball	0.88	0.58	33.3	baseball
VR	a batter catcher and umpire during a baseball game	0.91	0.84	66.7	<u>5</u>
Human refe	batter catcher and umpire anticipating the next pitch				
BeamS	a laptop computer sitting on top of a desk	0.91	0.69	25	desk
VR Human refe	a desk with a laptop and computer monitor	0.95	0.77	75	
riunali rele	an once desk with a laptop and computer monitor				

- Belief Revision relies on a different block (*i.e.* LM, similarity and visual context) to make the final revision

- We perform an ablation study over a random 100 samples from the test set to investigate the effectiveness of the proposed setup

Model	B-4	М	R	С	S
VilBERT-VR-GPT-2 + ResNet					
+ RoBERTa (proposed)	0.346	0.266	0.541	1.171	0.205
+ DistilSBERT (Reimers et al., 2019)	0.335	0.266	0.537	1.128	0.205
+ SimCSE (Gao et al., 2021)	0.324	0.263	0.529	1.122	0.207
+ SimCSE (unsupervised)	0.349	0.267	0.539	1.164	0.205
+ CLIP (Radford et al., 2021)	0.335	0.261	0.527	1.142	0.202
Trans - VR-GPT-2 + ResNet					
+ BERT (proposed)	0.363	0.268	0.565	1.281	0.207
+ DistilSBERT (Reimers et al., 2019)	0.355	0.260	0.557	1.249	0.205
+ SimCSE (Gao et al., 2021)	0.356	0.265	0.564	1.272	0.207
+ SimCSE (unsupervised)	0.356	0.263	0.560	1.253	0.208
+ CLIP (Radford et al., 2021)	0.349	0.260	0.555	1.243	0.203

Belief Revision with Negative Evidence

SimProb with Negative Evidence (Blok et al., 2007)

The Negative Evidence refers to the cases where the absence of visual evidence $(\neg c)$ leads to a decrease in the probability of the hypothesis.

$$\mathsf{P}(w \mid \neg c) = 1 - (1 - \mathsf{P}(w))^{\alpha}$$

Sergey V Blok, Douglas L, and Daniel Osherson."Induction as conditional probability judgment." Memory & Cognition 2007.

Belief Revision with Negative Evidence

SimProb with Negative Evidence (Blok et al., 2007)

The Negative Evidence refers to the cases where the absence of visual evidence $(\neg c)$ leads to a decrease in the probability of the hypothesis.

Sergey V Blok, Douglas L, and Daniel Osherson."Induction as conditional probability judgment." Memory & Cognition 2007.

Belief Revision with Negative evidence

A False Positive Visual Context (VR^{-low}): We employ the false-positive produced by the visual classifier as negative information to decrease the hypotheses.

Belief Revision with Negative evidence

- A False Positive Visual Context (VR^{-low}): We employ the false-positive produced by the visual classifier as negative information to decrease the hypotheses.
- B **Absent Visual Context (VR**^{-high}): The negative information here is a set of visual information extracted from the original visual context that does not exist in the image but has some relation.

- A False Positive Visual Context (VR^{-low}): We employ the false-positive produced by the visual classifier as negative information to decrease the hypotheses.
- B **Absent Visual Context (VR**^{-high}): The negative information here is a set of visual information extracted from the original visual context that does not exist in the image but has some relation.
- C **Positive Visual Context (VR**^{-pos}): We approach this from a positive belief revision perspective but as negative evidence. (1) the similarity is measured without the context of the sentence and (2) the static embedding is computed without knowing the sense of the word.

Model	B-1	B-4	М	R	С	S	BERTscore
Vilbert							
VilGreedy	0.751	0.330	0.272	0.554	1.104	0.207	0.9352
Vil _{BeamS}	0.752	0.351	0.274	0.557	1.115	0.205	0.9363
Vil+VR _{W-Object}	0.756	0.348	0.274	0.559	1.123	0.206	0.9365
Vil+VR _{Object}	0.756	0.348	0.274	0.559	1.120	0.206	0.9364
Vil+VR _{Control}	0.753	0.345	0.274	0.557	1.116	0.206	0.9361
Vil+VR _{RoBERTa} (positive)	0.753	0.353	0.276	0.559	1.128	0.207	0.9366
Vil+VR ^{_low}	0.748	0.349	0.275	0.557	1.116	0.206	0.9362
Vil+VR ^{-high} _{RoBERTa}	0.748	0.349	0.275	0.557	1.116	0.206	0.9364
Vil+VR ^{-pos}	0.751	0.351	0.276	0.558	1.123	0.207	0.9364
Vil+VR ^{-joint} _{RoBERTa+GloVe} (pos+neg)	0.750	0.351	0.276	0.559	1.126	0.208	0.9365
Transformer based caption genera	tor						
Trans _{Greedy}	0.787	0.368	0.276	0.574	1.211	0.215	0.9376
TransBeamS	0.793	0.387	0.281	0.582	1.247	0.220	0.9399
Vil+VR _{W-Object}	0.786	0.348	0.274	0.559	1.123	0.206	0.9365
Trans+VR _{Object}	0.790	0.383	0.280	0.580	1.237	0.219	0.9391
Trans+VR _{Control}	0.791	0.388	0.281	0.583	1.248	0.220	0.9398
Trans+VR _{BERT} (positive)	0.793	0.388	0.282	0.583	1.250	0.220	0.9399
Trans+VR ^{-low} BERT	0.791	0.387	0.280	0.582	1.242	0.218	0.9396
Trans+VR ^{-high} BERT	0.793	0.385	0.282	0.582	1.243	0.219	0.9397
Trans+VR ^{-pos} (negative)	0.794	0.388	0.282	0.583	1.249	0.220	0.9399
Trans+VR ^{-joint} BERT+GloVe	0.793	0.387	0.281	0.582	1.247	0.220	0.9398

Semantic similarity score : The unbalance similarity score (*e.g.* rare object) sim(visual/object, caption) negatively influences the revision. **Visual information:** Object classifier failure cases

Model	Caption	BERTscore	SBERT-sts	Human%	Visual
BeamS	a pile of trash sitting inside of a building	0.88	0.38	100	🗡 vacuum
VR	a pile of trash sitting in front of a building \pmb{X}	0.88	0.27	0	
Human refe	an older floor light sits deserted in an abandoned hospital				Constant of
BeamS	a kitchen with black counter tops and wooden cabinets	0.88	0.44	100	🗡 barbershop
VR	a kitchen counter with a black counter top	0.88	0.40	0	
Human refe	a kitchen with a sink bottles jars and a dishwasher				

Proposed Architecture

Experiments & Results

Conclusion

Conclusion

Contributions

- We demonstrate that the Belief Revision (BR) approach that works well with human judgment can be applied to Image Captioning by employing human-inspired reasoning via a pre-trained model.
- We propose two models to improve image caption systems (1) BR with positive visual evidence (increase the hypothesis) and (2) negative evidence (decrease the hypothesis), with wrong visual.

Future Work

We plan to apply the Belief Revision Score to many re-ranking tasks in NLP such as text generation, multimodel MT, and lexical selection.

October 12-1

Thank You